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Tutorial-01 Revisiting the Stacking Faults in 4H-SiC Epilayers and
Their Characterizations by Wafer—Level PL Mapping and
HAADF STEM

Recently silicon carbide (SiC) is one of the hottest semiconductor materials because
carbon neutrality and efforts for reducing greenhouse gas emissions. These global aims
make not only the environmental campaigns but also new regularities in worldwide
trading. Currently energy and semiconductor are the issue—making common words,
which we can hear in every single day, and SiC is just that one for energy efficient
power semiconductor devices because of its superior properties and mature industrial
technology.

However, SiC is not the perfect material and has several kinds of imperfections as like our
lives. The most common imperfections in 4H-SiC epilayers are dislocations and stacking
faults (almost of current SiC devices are being fabricated using 4H-SiC epilayers). The
so—called killing defects like carrot and triangular defects are macroscopic defects but
directly related to microscopic defects of dislocations and stacking faults. Therefore, in
order to understand defects in SiC epilayers, which deteriorate device performances, we
need knowledge and insight into dislocations and stacking faults in 4H-SiC epilayers.

Dislocations are not limited to the 4H-SiC epilayers but also easily observed as main
defect in the PVT grown 4H-SiC single crystal bulk (substrate), and familiar with and
(hopefully) well understood to researchers in SiC society. Therefore, today’s talk is
focusing on stacking faults in 4H-SiC epilayers.

Stacking faults in SiC epilayers have been studied more than 20 years by using several
characterization techniques including topography, TEM, and photoluminescence (PL).
Among these characterization methods, approaching by PL is quite useful because we
identify and categorize the stacking faults based on PL wavelength from each stacking
fault. However, problems in PL analysis of stacking faults are confusing and inaccurate
reports among pioneering results from leading research groups.

In this presentation, basic characteristics of stacking faults in 4H-SiC including 4 kinds
of Shockley-type and 3 kinds of Frank-type stacking faults will be revisited. And then,
experimental results from wafer-level PL mapping and HAADF HR-STEM will be
addressed to give more insight into the stacking faults in 4H-SiC epilayers.
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Invited-02 A Study on 150 mm 4H-SiC Bulk Single Crystal Growth
Using Recycled Powder
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Abstract:

One of the main policies is to reduce the amount of waste generated in accordance with
the government's carbon neutral policy. In the semiconductor process, SiC by-products
such as focus rings are not recycled due to contamination problems, but when re—cycling
such by—products, it is possible to secure price competitiveness while maintain ultra—high
purity characteristics. In our previous study, the possibility of growing 100 mm 4H-SiC
single crystals was confirmed by applying recycled SiC powder, and grown crystals were
measured as commercial levels quality.

In this study, the applicability of 150 mm 4H-SiC single crystal growth using the
recycled SiC powder was confirmed, and the effect of the recycled powder on the quality
was investigated through the analysis of the grown single crystal. The basic physical
properties such as particle size, shape, composition, and impurities of the recycled
powder were analyzed, and sublimation behavior that could occur inside the reactor was
predicted using these. The grown single crystal ingot was 4H-SIC, and no macro defects
were observed with the naked eye. In addition, the analysis results of micro defects such
as micro—pipe, dislocations and stacking faults will be discussed.

Keywords:

Silicon Carbide,
Single Crystal,
Sublimation,
Recycled powder,

Substrate
a. Corresponding Author ; igyeo@rist.re.kr

22 SiC Semiconductor Conference - SiC? 2023



Oral-01

0z
Pl

2023 SiC He M| ZAmH A

SiC M= H| AXte| FUAR Fet Tt

SYE", MIHSP, “*5’;2 BHeY, 40157, 23?20, 8
Young Jun Yoon', Jae Hwa Seo?, Wook Bahng?, Jeong Hyun Moon?, In Ho Kang?,
Hyoung Woo Kim?, Yu-Mi Kim', Yong Seok Hwang'

SRR IR SBRHT BT

Abstract:

HUIEA| AR 71 S MBBIEA| AX ] 245t SH(RALTTA-SIO| of 108, HHE

T£-Si9| oF 3H)S 7HX|H TI|RtSAt, FEHE MHAA S iWI H = 200N =0 U0
[

HHPIER= Qe MHIE A== 200N E 2850 MHE=AQ| 20| 4Ts| 5235t
Lt £3], 258 200 285z MHUEH 32 L AlA 8—?——’55 Aol thet 41240
1B QYT E 3|2 HAA| AXL| RFHAM ot DS Q-1 EICH MHIER| AX0| 2
ZFHIAMMO| SS510] LAMGHE &4 H|7LZS = 51LQ! SEE(Single Event Effect; HUARA &11)
9| A2, QHXIE 7Kz YRt T A0l UAISHH LS = TIAL S WO| 320 BAS U
A0l w2t Bt MRV S22 HE7H YMGIH AXt EE 327 SAMCR O E7| & S,
112|510 NASAS H|Z3! o] 712t 7|0l M= TEIER]| AXL0] it LFEAR Hato| 212t
g mefetn MzlY WIS Slstl QI 2 A= DoKX YMXHST|E 0188t SiC ™
HUIER| AXIO| LFEIAM DAL MBS +ESIACH, TV 1N S S50 LFYAR Fkof of
ot Z1IE EA0IRCE 100 MeV LA ZAIHO| 371245 SiC MOSFETS| 2EH10[ &t
EIOIX|= total ionizing dose Fets SRISIRICE. F7t Ad 2 248 Sot0 SFYAM J&0)| of
5t SiC MOSFET 224 mItst A =l0|Ct,

I'II'

4ru

OII

a. Corresponding Author ; yjyoon@kaeri.re.kr

23



Oral-02 Gate Ringing and Dynamic capacitance of SiC MOSFETs
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Abstract:

SiC MOSFET is one of the representative devices in power semiconductors with high
switching frequency and low switching energy loss. However, gate ringing is one of the
factors that limit the switching frequency and ruggedness of SiC MOSFET, despite its
strengths [1]. The cause and mechanism of gate ringing with respect to operating current
and temperature are still unclear [2]. This study investigated the trends in gate ringing
and dynamic capacitance with respect to drain current density and temperature.

Experimental and simulation studies were conducted on a commercially available 1,200
V SiC MOSFET to confirm the trend. Inductive double pulse tests were conducted at 5 A,
15 A, and 25 A currents and 300 K (RT), 373 K (100°C), and 423 K (150°C) temperatures.
Simulations were also conducted under the same conditions to clearly identify the
observed trends in the experimental data.

The results showed that gate ringing becomes more severe with higher operating current
and lower temperature. A larger plateau voltage during turn—off with higher current and
lower temperature allows for faster channel shut down, resulting in a larger dIS/dt value,
which is expected to be a cause of increased gate ringing [3].

In addition, gate—to—drain dynamic capacitance (CGD+dynamic) can be used to observe
the trend in capacitance value that varies with current and temperature, considering
the actual device operation status, unlike small signal gate-to-drain capacitance (Crss).
The depletion region is formed by the potential difference, and thus the condition
(current density and temperature) at the same drain—to—source voltage (VDS) affects the
capacitance. As the current density increases, the depletion region becomes smaller,
resulting in a larger CGD+dynamic, while the CGD+dynamic decreases with increasing
temperature due to the larger depletion region.
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Abstract:

Beta gallium oxide (3-Ga,0,) is a promising material for high-power applications due
to its excellent material properties, including an ultra-wide bandgap (Eg~ 4.8 V), high
critical field (Ebr~ 8 MV/cm), and high Baliga's figure-of-merit (BFOM~ 3214). These
properties make Ga,0;-based power devices suitable for power conversion applications
that require high reliability and high power density.

However, an enormous leakage currents in Ga,O; devices limits the realization of high—
reliability devices. It is known that the leakage current of the Schottky diode is related
to Fermi-level pinning in the metal-semiconductor (MS) interface. Fermi level pinning
refers to the phenomenon where the Fermi level is fixed to a specific energy level at
the interface between MS contact due to the high density of state, leading to non-
ideal electronic device performance. Therefore, reducing Fermi-level pinning in Ga,0O; is
important to control the leakage current.

Oxygen vacancy on the surface can create defect states in the bandgap of Ga,0s, and it
can induce to Fermi-level pinning metal-semiconductor interface. The concentration of
oxygen vacancies at the MS interface can be influenced by surface treatment such as
an oxygen environment annealing process or UV ozone treatment. And more research is
needed to be studied about the specific mechanisms with proper surface treatment and
how it affects the performance of devices.

In this study, we investigated Fermi-level pinning in 3—-Ga,0; thin films by performing
surface treatment under oxidizing conditions. Ga,0O5 thin films were deposited on 4H-SiC
substrates using the RF magnetron sputtering. SBH variation as a function of various
Schottky metal such as Ni, Pt, and W on Ga,0O, thin film is investigated to confirm the
fermi level pinning. Electrical properties of such as Schottky barrier height (SBH) and
ideality factor (n) are analyzed by 1=V and C-V curves.

a. Corresponding Author ; smkoo@kw.ac.kr
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N-Doped 4H-SiC Epitaxial Layers for Superjunction Power
Devices
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Abstract:

We utilized metal-organic chemical vapor deposition (MOCVD) to grow n-type 4H-SiC
epitaxial layers, including a 10 um-thick n—type SiC single layer (nitrogen doped 4H-SiC)
on an n+-SiC substrate as a reference sample, and a step—graded structure consisting of
three 2 um-thick epitaxial layers with varying doping levels on a nitrogen doped 4H-SiC
wafer.

Our investigation focused on the structural properties of the epitaxially grown 4H-SiC
multi-layer on the n+-SiC substrate, which was designed for a superjunction structured
power device. The multi-layer structure consisted of a 2 um n-SiC (n=7E15 cm) layer,
2 um n=SiC (n=1E16 cm™) layer, and 2 um n-SiC (n=4E16 cm®) layer. AFM images
showed poorer surface roughness of the step—graded SiC multilayers compared to the
reference sample.

Raman spectra revealed sharp and strong E2(TO) peaks, and the intensity ratio of E1(TO)/
E2(TO) was smaller than the reference and N-implanted SiC, indicating better crystal
quality. Moreover, 4H-SiC (0004) peaks were observed at 36.5° from all three samples
in the 26 curves, and omega rocking curves showed narrower FWHM (full width at
half maximum) of the multi-layer structure. The Raman and X-ray diffraction results
demonstrated high crystalline quality of the SiC multilayers structure, indicating its
potential for use in SJ-structured power devices.
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Abstract:

N

= AF0ME A& SiIC MOSFET HMES 08010 5.5 kW 34 QIHEC| 28 H|uwotl &
£ 2XMotoL. BN HAE AXO| CHEISH QRS OIHE 88 HAEESSH| flof YAE Es;z
Sdt ARHO| 25t M5 Mo ¥ ZLEY 7SS #E 34 QIHE2t ZAFE MO S/WE 4

0 HIEGIACE E5t 48 MES0| et Hs HIWE oA QIHE] B H0i| 7|5 4921 X%@
(output curve, transfer curve, diode 1=V curve S) Y SEMEIR &4 U HQRI A3 =
f 2AMSIACE Si IGBT & 27tX| £79] SiC XS0l CHol 5.5 kW S5t MEioilA 22 H|wst
ZAnt, 22+ 94.2, 95.6, 96.1%2] At AULE. Ol= Free wheeling diode (FWD) 2 FRDE
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PE-07 Post-Deposition Annealing Effects of Aerosol Deposited
BaTiO; on 4H-SiC Substrates as Metal-Insulator-
Semiconductor (MIS) Structure
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Abstract:

This study investigates the electrical characteristics of metal-insulator-semiconductor
(MIS) structure fabricated on silicon carbide (SiC) substrates using aerosol deposition (AD),
employing barium titanate (BaTiO,). SiC is a superior material for high-temperature, high-
voltage, high—frequency, and high-power applications, due to its remarkable electrical
and physical properties, such as a wide bandgap energy (~3.6 eV), critical electric field
(~2.4 MV/cm), thermal conductivity (~4.9 W/cmK), and mechanical strength.

In an effort to enhance SiC-based device performance, research has explored the use of
high-k oxide materials, like aluminum oxide (Al,O,) and hafnium oxide (HfO,), as silicon
dioxide (Si0,) replacements for MOSFETs and MIS structure on SiC. BaTiO, exhibits
exceptional dielectric and ferroelectric properties and has various applications, including
high—power electronics, actuators, sensors, and capacitive energy storage.

BaTiO4 thin films have been fabricated using multiple deposition methods, such as
molecular beam epitaxy (MBE), sol-gel, RF sputtering, and AD. The AD method has
several advantages, including minimal defects, substrate adhesion, low porosity,
nanoscale grains and high dielectric breakdown strength with improved densities.
Additionally, the films deposited by AD have been reported improvements of dielectric
properties with heat treatment.

In our experiments, MIS structure were fabricated using AD on 4H-SiC substrates, and
post-deposition annealed in O, atmospheres. We conducted electrical analysis through
current-voltage (I-V) and capacitance-voltage (C-V) at 1 MHz measurements and
calculated near interface trap density (N,). In addition, we analyzed the surface roughness
using atomic force microscopy (AFM). Our findings suggest that the post-deposition
annealed process significantly influences electrical properties, near interface trap density,
and surface roughness during dielectric thin film deposition using AD.
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Abstract:

The introduction of the Silicon carbide (SiC) in power metal oxide semiconductor field
effect transistor (MOSFET) has made great progress due to its excellent properties
including wide bandgap (~3.3 €V) and high critical electric field (~2.5 MV/cm). Though
Breakdown Voltage (BV) have increased through numerous studies, there has been little
researched in reducing the specific ON-resistance (R, )

Ronsp Of MOSFET s largely included as channel resistance (Rch), JFET resistance, and
drift layer resistance (Rdrift). One of the promising ways of reducing Rdrift is introducing
super—junction (SJ) in the drift region. As compensation for the high doping concentration
of p—pillar, the high doping concentration of N-epi layer caused low Ron. Furthermore,
BV increases due to the uniform distribution of the electric field in the drift region.
Consequently, SJ MOSFETs propose a better tradeoff between BV and R, .

Another promising way is introducing a very thin heavily doped n+ current spreading layer
(CSL) beneath the p-type base region, which leads to distribute the electron flow more
uniformly. However, the addition of CSL region causes an increase of electric field in the
oxide film over the JFET region in the blocking state. Since MOSFETs with CSL has both
low R, s, and BV, it is important to optimize the doping concentration and depth of CSL.
In this work, we proposed SiC SJ MOSFET with CSL for a better tradeoff than
conventional SJ MOSFET. To optimize the performance of device, we modified three
design parameters: the depth of CSL (Dcg), the depth of P-pillar (D), the doping
concentration of CSL (Ngg). It was verified that R,, ,, and BV decreased as Neg and Deg,
increased. D significantly contributed to the increase in BV by uniformly distributing of
the electric field. As a result, it was confirmed that the SJ with CSL structure had a larger
BFOM due to better tradeoff.
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PE-09 Deep Level Trap Analysis of 4H-SiC Schottky Barrier
Diode and PIN Diode
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Abstract:

The deep level defects themselves, such as Z1/2 and EH6/7, are intrinsic to the silicon
carbide (SiC) material and are not fundamentally different between Schottky Barrier
Diodes (SBD) and PiN diodes. However, the influence of these deep level defects on
device performance can vary depending on the device type.

We investigated deep levels in n—type 4H-SiC epitaxy layer of the Positive-Intrinsic—
Negative diode and Schottky barrier diodes by using deep level transient spectroscopy.
Despite the excellent performance of 4H-SiC, research on various deep level defects still
requires a lot of research to improve device performance. In Positive-Intrinsic-Negative
diode, two defects of 196K and 628K are observed more than Schottky barrier diode.
This is related to the action of impurity atoms infiltrating or occupying the 4H-SiC lattice
in the ion implantation process. The |-V characteristics of the Positive-Intrinsic-Negative
diode shows about ~100 times lower the leakage current level than Schottky barrier diode
due to the grid structures in Positive=Intrinsic-Negative. As a result of comparing the
capacitance of devices diode and Schottky barrier diode devices, it can be seen that the
capacitance value lowered if it exists the P implantation regions from C-V characteristics.
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Abstract:

Power semiconductors are fundamental components of modern electronics, playing a
crucial role in a wide range of applications, from electric vehicles to renewable energy
systems. Silicon Carbide (SiC) is a wide-bandgap semiconductor material that offers
several advantages, such as high temperature and radiation resistance, high breakdown
voltage, and low power loss [1,2]. These benefits make SiC particularly attractive for
high—-performance power electronic devices. Aluminum and boron ions are commonly
utilized as acceptors in p—type SiC, with ionization energies of 240 meV and 290 meV,
respectively [3]. These acceptors introduce holes into the material, which are the majority
carriers in p—type SiC. However, due to the relatively high acceptor ionization energy, it is
challenging to achieve a high concentration of holes in the P+ region at room temperature,
which can limit the performance of certain electronic devices that rely on this region, such
as bipolar junction transistors.

Nickel oxide (NiO) is a transparent natural p-type semiconductor and has a wide energy
band gap (3.4 - 4.0 eV), showing excellent chemical stability, making it a good candidate
for bipolar devices [4-6]. Notably, nickel oxide is a promising candidate in the application
of high—frequency and power electronics because of its good electrical conductivity and
high optical transmission as a transparent conductive oxide (TCO). NiO has high hole
injection efficiency and is suitable for forming heterojunctions with n—type 4H-SiC due to
relatively large band gaps.

In this work, we present a detailed analysis of various electrical characteristics of a
heterojunction PiN diode, in which a thin film of NiO was deposited with rf-sputtering on
a 4H-SiC substrate. We confirmed the thin film characteristics of NiO through the post-
treatment process. Surface structural analysis of the thin film was performed by analyzing
its roughness using atomic force microscopy (AFM) and its ion concentration using
X-ray photoelectron spectroscopy (XPS). Various electrical parameters, such as built-
in potential, were extracted through on/off ratio, Ron, sp, and capacitance-voltage (CV)
measurement using current-voltage (IV) characterization.

a. Corresponding Author ; smkoo@kw.ac.kr
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Abstract:

SiCe e =2 3, 8 ¥ S40= & A4 U1, epitaxial film 8% 22U 55| ¢
off HHO| O THotL! £440] Q0{0F Stt, SR SiC2 CMP (chemical mechanical polishing)
SE2 YUNORZ 72 713 HIZM W2 V1B E 02122 731 ATt MRR (material removal
rate)t 7127|, 2% Y AFX|E ZEEH 2HE wafer EHO| FHE SiC-CMP 3H2| F 7HX|
L Q0I0|C}. 2Lt UEHXPI CMP £2{2|0 £Xfok= S0t YAte M2 SEEN CMP S8
SO 27t AF2HR|C| s REE 4= UM, FE cleaning S 20T 1 SEX7F SIC EHS

=
oz HEoIH YAt 2ol AFS & 4 ACH[1,2].

(B

2 g70ME CMP 38 floh M0IZ4 0l2e &7Ieh SiC £2{2(01A O 2ol g4t
Ol w2t CMP 84 & SiC 7|Hel HEH EEE ZAGIICH J8 12 A48 FH0M MnO,-2f 2t
S SIC 7| Mo BHESS LIEHHC} ASiEEE & H0l= Mny+= 0| 240[21t Bt36t
04 MnO,~2 S0Pt22 AD7t SIREX| 42 £2{2|2 CMP 30| 7H53IIL [3,4]. 0] ¢i7
OlAl= CMP S0jA 0| 240|20] H7tEl SiC &2{2]9| HOMRY &2 0%, 3.5%, 5% Lz
= CMP 38 AL O8 2= Chfst A0t ggs 71l £212|2 CMP 888 7% SiC 7|
0f] CHSH HH SHEH 0]0|X] L &7 HIO|HE AFM (atomic force microscope) 24102 &G}
QACt HOHE AMIIGHK| ¥ £2{2|2 7186 SiC 7|He] HH HE7|= M7t sQE &212
£ A% SIC 7|0 7t IUCH T 32 CHst oM FC2 7H8E SiC 71#Q| Si-face
2 C—face0f Th8t MRRE LIEFHLC}. OIS M7toHK| 942 £2i2|2 7kS$t SiC 7|He| Si-face
9| MRR Zf2 ¢0f7} 8t &2{2|2 7126t SiC 7|Make] MRRIF 79| SYUsH 8t C-face2)
MRR /2 5| YA EEHOZ SiC 7|1H2| particle mapS 18 401 LIEHAICE. A0t
7t SREX| 42 2212 AHESH0 CMP 715E A1F SiC 712 SiC EHOIA 2N &2 20
particleE 2= A2 HELUCH
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(Design Optimization of Insulating Materials for 4H-SiC
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Abstract:

SiC(silicon carbide)= =2 &8 Tt =2 ¥ MEL U =2 FMAL 0|SEE 717 SUsH wide B

B 8ieA| M= & SHHO|CE SiC CHI0|AL] 28 SHAI77| floiMe O 2 23U H =2 &

ZI9| 4H-SiC HZEH YI0|H7F TREHH, 150 mm TEX Y(0|HO|A SHAE CHIO|A M50 Lt

Yot 29| SiC M3 CHIO|AS MAtst 4= QICH[1,2]. &g Y=ot @2 IEH SiC ofmis0| &

20| M1 gl 30| B2 1ZH SiC 7|HE M= HET 4 s A2 & 93N e,
|

o=
hot-zone designg +got0 28 & THO| 2 S US| Mootz X0] thE SiC 2
H HH0IM TR Bigs S0|10 2B SiC AlojHe| & 2 Zet UrE S0|=0 Qs 92 ot

[3,4].

B A0 St HEIHE AF2SH= 7|Z& hot-zone designil A2 2 HH EMG J1F U
T 20| T2 = 749 HEMZ 4% hot-zone designS AFR6I0 St A& 2210 SiC o
AHE HYYAA HIEME TIMGIICE SIC HEY &2 4H-SIC, C-face?| 621X seedS At
&3a10{ 2 2,300 2| RE0IM &S Xgotden] of I, Ar 2217101A =S 1~40 torr2 |X|
AlZiLCH.

SYE 2HO YR BH HHE Soff TSN LS HINZAC2M g% FHo| 2= 74l K] 7+
S OEE 20151 SiC HEF 2H EX 242 Zst Y=t FWHM %t mapping &
FE 0|23t 0|=M 621X| 4H-SiC HAT J&2 flot HE M= AA £&st WS MAlGH
X} ST
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Abstract:

2|2 7HH0|E(@H-SIC)e M2lZ 7|8t AKXt CiH| XIMIDY BHEA| ME2 ZHRT QIO wide
band-gap2 712 €48 A (hexagonal cubic) #£2| BI=H| S22 245t Mg EHI =2
SEMY £, afetA 3 22|18 QY0 =2 ACE UM lon] e At HTIt 0|R 0K
0 UBULCEH 4H-SIC M &X|(power device)?] A+ L 282 11g242 76k & X
Ol 2™ = S EUELICE 0] AFUME BAT(metal oxide semiconductor field
effect transistor)2| ZX{3t5 T SIAUSLICE. Super junction2 2HXO| ABEE SYE
gateS 7P MOSFET L& CHH| P—pillare] Z/0|0f| 2t 2 2-X5t EME THX|H, multi-epi &
1t deep-trench &4 71210 Q&LICt. Deep-trench 7|&0| multi-epi 7|%& CHH| & 112 T
BEEHER, [ 52 SENYCE 0I5t AY &M ZUAS 7|UE & U= M MX| 12
LC}. Trench split gate 22 E 22|50 X192 2|X|Sk= control gate@t dummy gateZ 14
=[0{U2H, reverse transfer capacitanceE £ 4= U701 7| trench gate CiH| & HE A2
A& 7tsot HENFE M HX| AEYULL 2 =22 4H-SiC deep-trench super junction
TR MOIUEE HSAA O HE AJE L2 7IMQA} split gate AE MESIASLICE
SilvacoQ| athena®t atlasS 223t AI22/|0|4 Z1t 7|2 SiC trench gate MOSFETH| HI3H =2
giE MY, ¥2 2-Xds GRS

=

rr k
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Abstract:
M UIEHIE 0|26t M ZE0| st 2= M7| XSk ARe| et 8 52461 7ot
QICH ESH M=k 7hM A& 3 Ol X| 200N B HIES F0(7| flet 7|2 MY 2829 &8
= SUAIZ17] ffet 7HL0| 2akA O|F0{X|LL QICt.

(o]

7|1E0] AMgots INY, 1MEE M Wt BE VMO == M2t ABL| ALO,, AN, SisN,
direct bonded copper (DBC) 7|=0]|Lt active metal brazing (AMB) 7[H0] 20| Al U=
O M2t Age| 7|12 I9E S50 ZEE 7EXXEL S854 HAEONMN CTE mismatch2
QISH7|Th M2 3 T MAE Al I7HA0|2b= BHEES 7EK 1D QUCH IMS 7|He| 22 42 3 RF
O MT 7| YoM = Eo| AT 3 JHLUO| O|R0{X| 1D QUCH CHE 40| E0[oHH AR X ot& Cu
St QTR At0|9] CTE mismatch 2XIS s1ZE 4 U= 7[HO|CE

= =20AE= M2t DBC 7|H0|LE AMB 7[EE tHAotH RTRE ArESt IMS 7|HE 0125104
T 2ES MG 200l ot AZ0SHIAL BiCt, 71E M8 259 A< DBC 7|2t base plate
£ M= HZfoto] 229 Heh S-S 0I80t0 Mg 253 MAret 20| 2 =20M MAloh= M
259 Z2 DBC 7|1t base plate0] YIS 7| HIZIGH] 1412] et SYRUCRE T 2
=2 MAE 4= UL M& 3H stepsE 2L 4 U2H DBC 7|t base plate AHO[2] TIM &gt
SES MU 4= AN LE SEHE JhMS 4= QT MEret M 259 TV (K21 £4 H[WE (o0
300V, 100 A 27122 & & DBC 7|IHS ALESH MY BE1 ARIY S42 Hlwotien] E&
S48 HluE= F7t 242 Soto] e oot
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Abstract:

= %T0AM= 1,200 V & SBDZ LiZEFSt trench gate MOSFET E/Z{510f &6t H1E g
7|1& AX[0| Hlol R4S SfQISHIARGHTY.

LT HieF 20| SiC 7= o ofphE Me BIR| AKX Si 7(8te] HMEI=A| AXIRL H|1W
= [} Si AKX s}, YELS MM = Ul 12, 1% SX{0| 7tS5iLt

2 =20ME ASAkE B 2 W72 XSAE PTC o|HE MEBI=R0IM AEE £ Us
trench gate MOSFETS AH5110X} STt 7|& trench gate MOSFETO| schottky barrier diode
(SBD)E L{AEFSH 1,200 V&2 Trench MOSFET2 TCADES 0|20610] 23 AIZY0|ME 4351
L AlZ201de Sall 218 #25 0|8010 /&9 I2t0|HE TEoIH =YY 2M &
o] M7 Mol EME EMotiLt.

SiC 7|80 =2 17| W=0i| Sioil HoH 108 M= 37|17} EH{S1 SA0f Ol 10%E 124510
1,300 V 0|49 &EMYE 7|Z=2= SIRICt.

Trench gate MOSFETO| SBDS LHZIGHA| =™ trench gate ot=te] RS E T 2t 1tZ Qlst
S E SEHYS L Eot /1Y E28 EY S ot 2 X E-8E JFET 0| AlRtX|Y|
=20 planar gate MOSFET ELCt 34 &Y 4= QUL

2 =20ilA AASt 1,200 V& SiC 7[81e] SBDE LIHS! trench gate &3 MOSFETAXL= AtS
RO AFBElE CHfet ARIE AXI0| EE2E 5 UM AR &4 MU= Qlet UK 28 3

Tt nHY 5SS e aakg A R4t 12 S S5 THE U A2z dAEn.

01
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Abstract:

Silicon carbide (SiC) is one of the most used semiconductor material for building up
high-performance microelectronic device because of its remarkable physicochemical
stability and mechanical hardness [1]. In this study, we demonstrated a functionalization
of 4H-SiC surface and the detection of glucose using an enzyme modified SiC surface.
The functionalization and enzyme modification on 4H-SiC surface were investigated with
a cyclic voltammetry (CV) by reduction-oxidation (Redox) potential and the changes. The
surface was further modified with glucose oxidase (GOx) for the application of a novel SiC
wafer based glucose sensor.

By the CV scan, the oxidation peak of amino group modified 4H-SiC was shifted and
continuously increased by the scan number increasing and the reduction peak increased
in an irregular manner unlike oxidation peak shift. The 4H-SiC shows significant higher
Redox potential change compare with Si surface which means that sacrificial oxidation
of SiC surface is very effective for the functionalization. The performance analysis of the
SiC/GOx based glucose sensing electrodes was studied at 2.5 mM glucose concentration
and was shown the oxidation peak of +12 mA around +0.4 V and reduction peak of = 90
mA around - 0.2 V [2].

In this study, we demonstrated the surface functionalization of 4H-SiC substrate. The
surface of 4H-SiC was oxidized by thermal oxidation and treated with amnio-silane
for the functionalization. CV shows that the thermal oxidized 4H-SiC surface was
significantly higher redox potential than those of the other surfaces. We also achieved the
sensing of glucose by the novel SiC based GOx electrode. Further works are needed to
improve the sensitivity and durability.
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Abstract:

Ga,0, (EG = ~4.8 eV) is a promising semiconductor material with a wide bandgap, along
with SiC and GaN [1]. It is gaining attention as a potential replacement for currently
available wide—bandgap power electronics due to its superior performance and lower
manufacturing cost. The availability of high—-quality Ga,O; substrates produced from
melt—grown bulk single crystals also facilitates the development of vertical power devices
[2]. In addition, various epitaxial growth methods such as metal organic chemical vapor
deposition (MOCVD) and molecular beam epitaxy (MBE) have been widely explored for
optimizing growth conditions, developing heterostructures, and characterizing devices [3].

Aerosol deposition is a promising technique for depositing functional materials onto
semiconductor surfaces with high precision and efficiency [4]. It involves generating an
aerosol of particles, which are then directed towards the substrate surface to form a thin
film. Compared to other deposition techniques, aerosol deposition offers greater control
over the thickness and uniformity of the deposited film, and allows for the deposition of a
wider range of materials onto a variety of substrate surfaces [5].

In this work, Ga,05/4H-SiC heterojunction diodes were fabricated by deposition on SiC
substrates using Aerosol Deposition, with different Thickness. (1 im, 3 um) The effect of
the thickness on electrical characteristics in devices was examined by measuring the
current-voltage (I-V), capacitance-voltage (C-V), Hall effect measurement.
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Effect of Gas Ambience at Annealing on Electrical
Characteristics of Cu,0/4H-SiC PiN Diodes by RF-
Sputtering
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Abstract:

In this study, we investigate the electron affinity and leakage current properties of copper
oxide (Cu,0) thin films deposited on SiC substrates. 4H-SiC has a band gap of 3.26
eV, which is significantly higher than that of silicon (1.12 eV). This wide bandgap allows
4H-SiC devices to operate at higher temperatures and higher voltages without suffering
from excessive leakage currents or breakdown [1]. However, the low hole concentration
and injection capacity observed at room temperature when using aluminum as a p-type
dopant in 4H-SiC presents a significant challenge [2].

As a result, researchers have investigated alternative p—type semiconductor materials,
such as cuprous oxide (Cu,0), tin oxide (SnO), and nickel oxide (NiO), to address this
issue. Cu,0, with a bandgap of 2.1 eV, is a p—type semiconductor having an electron
affinity (x) of around 3.2 eV [4]. Typical Cu,O has a carrier concentration in the range of
1015 to 1019 cm-3 [5]. As a result, Cu,O films are regarded as a p-type candidate for
oxide solar cells and diodes based on p—n junctions.

The presence of (110), (111), (220), and (311) peaks in XRD indicates that the samples
are polycrystalline and that there is no preferential orientation. In XPS analysis, it
was shown that hole charge carriers can be produced by point defects. Additionally,
under O-rich conditions, it is likely for the material to have oxygen interstitials.
Electrical characteristics were analyzed through forward and reverse current-voltage
measurements. Cu,O with an electron affinity of 3.2 eV, exhibits a small conduction band
offset with SiC and subsequently a high current density at forward voltage. Furthermore,
Cu,0 samples exhibit a low leakage current in reverse bias, resulting in an enhanced
on/off ratio and a reduced specific on-resistance. This improvement translates into an
approximately 107 on/off ratio and a low specific on-resistance (R,,,) for Cu,0-based
electronic devices in SiC.

a. Corresponding Author ; smkoo@kw.ac.kr




PE-19 Doping of SiC with Phosphorus by Using Research
Reactor at KAERI
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Abstract:

Silicon carbide (SiC) as a wide band-gap semiconductor material, is suitable for high
power and high frequency electronic devices because of its excellent thermal and
electrical properties compared with silicon. Until now the commonly used dopants in SiC
have been nitrogen as a donor and aluminum as an acceptor. However, in situ doping
during crystal growth or epitaxy is difficult to control the homogeneity. For this purpose
it is homogenously doped by neutron transmutation doping (NTD) using phosphorous to
get a n—type material [1]. Therefore, studies using NTD for uniform doping of SiC have
been conducted by some researchers [2-4]. However, most of these studies irradiated
SiC by neutrons on a laboratory scale and the main purpose was to analyze the defects
that occur by radiation. In this study, we developed an irradiation devices for the SiC in
the vertical irradiation hole of the research reactor, HANARO at KAERI. The design of the
irradiation device was optimized to achieve a flat axial and radial distribution of the Si—
30(n,7)Si=31 reaction rate. Prior to commercial NTD service for SiC semiconductors, a
neutron irradiation test was performed on a 4" high purity semi-insulating 4H-SiC wafers.
From the color change after neutron irradiation, it was found that the P-31 dopants
created by neutrons was uniformly distributed throughout the wafer. It is expected that
high—quiality with high voltage devices will be able to be developed by using the NTD-
SiC material instead of the conventional epi-wafer for the n—drift layer of the power
semiconductor.
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Abstract:

e

2|2 7HOIESIOE w2 EHEs, §2 MEY 2 =2 AN MY E402 0I5 12
M AN ASE= M AXKE S0fM YUst HZ0|CH H2|Z 7HHI0|=(SIC) HEE o
O R = MEEXIZAMMIH (TSSG : top seeded solution growth), 112 3I5H 7|4 &5
A (HTCVD : high temperature chemical deposition), S2|% 7|4 S&HH (PVT : physical
vapor transport) 0| QICt.
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Abstract:

EISITA(SIC) HHAH MR = 43HH(PVT, physical vapor transport)2 SEHHS £54 SiC €
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Y £ = HAsN, el 2010 Feks W= [1],506] 89etE 291 & otLiel 7|45
+42 LIS 22 5 7| HAZ 74| F2E 4 QIO MY & 8 HAs OE22 7pe 4
= 2 RN g S5t 4, F I HAE 22 AMHEZ 0|5E 7|AE0] seed?| 4
HHOZ M RS Soff 55 = 1FH0ICE Ot = Hi A9 22 44 HAHUZH thalA
= 02 =4 ZEO0| M=, 0] MY & SN F&S FE= Qo2& ST H o =t
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o EHYES HAS UHSICE OIS LIoh YAt 2717F M=E THE 317 [ &S A (CVD, chemical
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PE-23 Behavior of In—-Core Defects in Neutron Transmutation
Doped Silicon Carbide Under Thermal Annealing

Abstract:

In recent, the neutron transmutation doping (NTD) technique using a research reactor has
been developed for uniform doping of SiC. NTD is a method for achieving uniform doping
in bulky SiC in a short time. However, the many defects generated by various types of
intense radiation in the core make it challenging to apply to electronic devices. In general,
defects in SiC deteriorate the electrical properties. To use NTD-SiC in electronic devices,
the removal of "in-core defects" through thermal annealing is necessary. However,
suitable annealing conditions for NTD-SiC have not been systematized yet. In this
study, we investigated the behavior of in—core defects in NTD-SiC wafers, depending
on the thermal annealing conditions. The NTD-SiC wafer used in the experiment was
produced by in—core irradiation at HANARO of Korea Atomic Energy Research Institute. In
irradiation process, thermal neutron flux was measured to be 2.62x 10" cm-2s' (thermal/
fast flux ratio is estimated to be ~500). Total fluence and doping density were calculated
to be 1.5x10"® cm™ and 2.5x 10" cm™. Thermal annealing was performed for 60 or 120
minutes at temperatures between 1,100 and 1,700°C. The analysis of defect behavior in
thermally treated NTD-SiC was carried out using photo-induced transient spectroscopy
(PITS) in the temperature range of 80K to 700K. As a result of the measurement, defect
levels between E.~0.19 eV and E.-1.61 eV were detected. Most of the defects were
characterized to be neutral charge state. The defect concentration showed an increasing
trend as the annealing temperature increased from 1,100°C to 1,700°C. However, it
also exhibited a decreasing tendency when subjected to prolonged annealing at 1,700°
C. The concentration of Z1/2 (Ec-0.66 eV) was 1.1x 10> cm™, which was so low that it
was comparable to the concentration of CVD 4H-SIiC epi-layer. The low concentration
of defects measured after heat treatment at 1,700C suggests that NTD-SiC could be
utilized as a electrical component.
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Wafer-level Identification of Stacking Faults in 4H-SiC
Epilayers and Their Effects on the Electrical Characteristics
of Schottky Barrier Diodes
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Abstract:

In this study, we performed the high—-speed wafer-level detection of defects in the
epilayers and classification of dislocation types by auto—navigation function using the
developed PL mapping system. We especially focused on the classification of detected
stacking faults with measuring the emitting PL signals from stacking faults. Depending
on the types of classified stacking faults, the effects of each type on the electrical
characteristics of devices were evaluated.

A commercially available 100 mm-diameter 4H-SiC epitaxial wafer was used in
this study. The nondestructive technique of PL mapping was used to detecting and
classifying of defects. Schottky barrier diodes (SBD)s were fabricated with Ti Schottky
metals, the position and type of stacking faults were confirmed using PL mapping before
and after device fabrications.

A total of 346 stacking faults and triangular defects were detected at the PL mapping
measurement of 100 mm-diameter 4H-SiC epitaxial wafer before device fabrication. A
total of 49 SBDs were overlapped with stacking faults and triangular defects after device
fabrication. As is well-known, the triangular defects act as killer defects, the electrical
characteristics of SBD affected by triangular defects are degraded regardless of portion
of defect area on the SBD area. The resistance of SBDs including the stacking faults is
increased, so the forward voltages of SBDs are increased. We will present further related
studies of effect of stacking faults on the electrical characteristics at the conferences.

a. Corresponding Author ; nmk@keri.re.kr




PE-25 A Study on the Relationship Between Switching Behavior
and Output Capacitance of a 1.2 kV SiC MOSFET

with Termination Region
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Abstract:

SiC-based devices are evaluated as promising candidates to replace Si devices due to
their smaller chip size and low switching loss. However, gate leakage may occur due to
electric field crowding at the main p+/n junction. Edge termination is a technology for
mitigating this phenomenon, and major technologies have been developed based on
Junction Termination Extension (JTE) or Floating Field Ring (FFR). Previously, the focus
was on optimizing the ring design to obtain a stable electric field distribution by adjusting
process parameters such as doping concentration and width. Although the chip size
of SiC MOSFETs is smaller than those of Si, the portion of the edge termination area
compared to the total chip size cannot be ignorable. Up to date, the dynamic switching
behavior of SiC MOSFETs considering the termination region has rarely been studied.
The parasitic capacitance of SiC MOSFET can be divided into input capacitance (Cy.),
output capacitance (C,.), and reverse transfer capacitance (C..). In particular, if the edge
termination size is comparable to the active size (smaller chip), the drain—to-source
capacitance (Cps) caused by the edge termination will lead to a substantial switching loss.
In this study, we use an active—edge termination united mixed—mode simulation method
to investigate the effect of the parasitic capacitance in the termination region for dynamic
switching characteristics. As the ratio of the active/edge area increases (decrease in
the resistance), the Cpg portion by the edge termination is gradually decreased. As the
total chip size increases, the increase in the active area is larger than that of the edge
termination. The dynamic switching results also show that the significantly larger Cyg
current from the active region than that of the edge termination.
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On the Physical Analysis of Gate Oscillation of 4H-SiC
MOSFET's Inductive Switching
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Abstract:

SiIC-MOSFETs can handle higher voltage and current densities than Si-MOSFETs,
support faster switching speeds, and have higher operating temperature ranges.
Recently, SIC MOSFET has become more important as products such as chargers and
inverters for vehicles using SIC MOSFET, solar inverters, and industrial inverters have
been commercialized.

But accurate physical analysis of dynamic switching of SiC MOSFETs has not been yet
confirmed to date. This study provides a dynamic switching physical analysis of SiC
power device using a five-terminal method. For five terminals the gate is divided into
gate-to—sources and gate—to—drains, and the source is split into n+ (channel current)
and p+ (drain—to-source displacement current), respectively Conventional three—terminal
(gate, drain, and source) analysis has limitations in examining current movement over
time. It accurately analyzes the mechanism of displacement current and current spike
phenomena owing to the parasitic inductances during switching on/off through the five—
terminal method. It also defines the potential shift according to the source inductance
and provides an analysis of the gate oscillation. The simulation results is compared with
the real measurement data as well.

a. Corresponding Author ; h.kang@kentech.ac.kr
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SS-11 Design and Investigation of 4H-SiC Split—gate Trench
VDMOSFET
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Abstract:

Silicon Carbide (SiC) has been widely used and studied in power electronics technology
due to its high bandgap (~ 3.26 eV) and high critical electric field (~ 3 MV/cm). SiC-based
devices have been proposed, such as Trench Metal-Oxide-Semiconductor Field-Effect-
Transistors (UMOSFETs) with high specific ON-resistance (R,,.,). Furthermore, the
problem of decreasing breakdown voltage (BV) and switching speed has been overcome
by the improved split gate structure.

Recently, devices with Floating Islands (FLI) structure have been developed to meet the
demand for even higher BV devices. The FLI is inserted into the drift layer to increase BV
and decrease gate—drain charge (Qgp) in UMOSFETs.

In this work, we demonstrate that the FLI structure provides higher BV than the
conventional SiC Split-Gate Trench Verticle-Double-Diffused Metal-Oxide-
Semiconductor Field-Effect=Transistor (SGT VDMOSFET) structure, which offers
improved Baliga’s Figure of Merit (BFOM) with lower R, , for achieving the same BV. The
doping concentration, length, position, and width of the FLI were optimized to analyze
the electric field and to present the BV trend according to the variables. Each variable was
selected in order through the split gate optimization process. The SiC SGT VDMOSFET
structure was designed using Silvaco TCAD simulations, and device optimization was
performed with consideration of BV and R,,,. These results show good potential for
related device structures.
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Abstract:

Wide Band Gap material such as Silicon Carbide (SiC) has appeared as a good material for
high—frequency and high—power applications due to its superior material properties, such
as higher breakdown voltage, BV wider bandgap, and lower specific on-resistance(R,, s,)-
SiC-based devices offer several advantages over traditional silicon-based devices,
including higher efficiency, higher power density, and better thermal performance.
However, Further research is needed to improve performance of SiC-based devices.

Merged Pin Schottky Diode (MPS) are an important SiC-based devices that are widely
used in power electronics. MPS diodes can provide several benefits, such as fast
switching speed, low conduction loss, and high reliability. However, the performance of
MPS diodes is heavily dependent on the design and fabrication process. Therefore, there
is a need for research to optimize the design and fabrication process of MPS diodes for
improved device performance.

In this paper, we propose a simulation-based optimization study of the epi depth, epi
doping concentration, and p-well doping concentration in MPS diodes. We will use
Silvaco TCAD software to simulate the device characteristics and optimize the epi and
p-well doping concentrations for maximum BV and lowest R, ;.. Our goal is to investigate
the effect of epi depth and doping concentration, as well as p—well doping concentration,
on the performance of MPS diodes and propose an optimized design for improved device
performance. We will compare each performance of MPS diodes using the figure of merit
(BFOM). The proposed research will contribute to high-performance SiC-based power
devices, which can lead to significant benefits in terms of system performance.
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